Счет чисел со знаком

Целое число — Википедия

счет чисел со знаком

Таблицы сложения легко составить, используя Правило Счета. . Рассмотрим особенности записи целых чисел со знаком на примере однобайтового. При использовании чисел с фиксированной точкой может возникнуть Код знака записывается перед старшей цифрой числа и отделяется от неё точкой: Формат D за счёт большей длины, используемой для увеличения. Для этого, отбрасываем знаки чисел и берём модули этих чисел. Сложим модули и перед суммой поставим знак, который был общим у данных чисел.

Арифметика с плавающей запятой почему-то считается экзотической областью компьютерных наук, учитывая, что соответствующие типы данных присутствуют в каждом языке программирования. Я сам, если честно, никогда не придавал особого значения компьютерной арифметике, пока решая одну и ту же задачу на CPU и GPU получил разный результат. Оказалось, что в потайных углах этой области скрываются очень любопытные и странные явления: Корни этого айсберга уходят глубоко в математику, а я под катом постараюсь обрисовать лишь то, что лежит на поверхности.

Основы Множество целых чисел бесконечно, но мы всегда можем подобрать такое число бит, чтобы представить любое целое число, возникающее при решении конкретной задачи.

Множество действительных чисел не только бесконечно, но еще и непрерывно, поэтому, сколько бы мы не взяли бит, мы неизбежно столкнемся с числами, которые не имеют точного представления.

Числа с плавающей запятой — один из возможных способов предсталения действительных чисел, который является компромиссом между точностью и диапазоном принимаемых значений. Число с плавающей запятой состоит из набора отдельных разрядов, условно разделенных на знак, экспоненту порядок и мантиссу.

Порядок и мантисса — целые числа, которые вместе со знаком дают представление числа с плавающей запятой в следующем виде: Математически это записывается так: Основание определяет систему счисления разрядов. Мантисса — это целое число фиксированной длины, которое представляет старшие разряды действительного числа. Порядок — это степень базы двойки старшего разряда.

Сразу видно, что мантисса состоит из трех знаков, а порядок равен двум. Допустим мы хотим получить дробное число, используя те же 3 бита мантиссы. Два других разряда, расположенных правее после запятойобеспечивают вклад 2E-1 и 2E-2 20 и соответственно.

Очевидно, что регулируя E одно и то же число можно представить по-разному. Это не удобно для оборудования, так как нужно учитывать множественность представлния при сравнении чисел и при выполнении над ними арифметических операций. Кроме того, это не экономично, поскольку число представлений — конечное, а повторения уменьшают множество чисел, которые вообще могут быть представлены.

ЧТО ОЗНАЧАЮТ ЦИФРЫ АНГЕЛА

Поэтому уже в самых первых машинах начали использовать трюк, делая первый бит мантиссы всегда положительным. Такое предаставление назвали нормализованным. Это экономит один бит, так как неявную единицу не нужно хранить в памяти, и обеспечивает уникальность представления числа. Но в нормализованном представлении чисел возникает новая проблема — в такой форме невозможно представить ноль. Строго говоря, нормализованное число имеет следующий вид: Качество решения задач во многом зависит от выбора представления чисел с плавающей запятой.

Мы плавно подошли к проблеме стандартизации такого представления. Здесь нет отличий от случая 1, рассмотренного для обратного кода. Получен правильный результат в дополнительном коде. При переводе в прямой код биты цифровой части результата инвертируются и к младшему разряду прибавляется единица: Единицу переноса из знакового разряда компьютер отбрасывает. Случаи переполнения для дополнительных кодов рассматриваются по аналогии со случаями 5 и 6 для обратных кодов.

Сравнение рассмотренных форм кодирования целых чисел со знаком показывает: Умножение и деление Во многих компьютерах умножение производится как последовательность сложений и сдвигов. Для этого в АЛУ имеется регистр, называемый накапливающим сумматором, который до начала выполнения операции содержит число ноль.

Числа: натуральные, целые, рациональные, иррациональные, действительные, комплексные | olvernico.ml

Другой регистр АЛУ, участвующий в выполнении этой операции, вначале содержит множитель. Затем по мере выполнения сложений содержащееся в нем число уменьшается, пока не достигнет нулевого значения.

счет чисел со знаком

Для иллюстрации умножим на Деление для компьютера является трудной операцией. Обычно оно реализуется путем многократного прибавления к делимому дополнительного кода делителя.

Глава 4 — Арифметические основы компьютеров

Как представляются в компьютере вещественные числа? Система вещественных чисел в математических вычислениях предполагается непрерывной и бесконечной, то есть не имеющей ограничений на диапазон и точность представления чисел. Однако в компьютерах числа хранятся в регистрах и ячейках памяти с ограниченным количеством разрядов. В следствие этого система вещественных чисел, представимых в машине, является дискретной прерывной и конечной.

При написании вещественных чисел в программах вместо привычной запятой принято ставить точку. Для отображения вещественных чисел, которые могут быть как очень маленькими, так и очень большими, используется форма записи чисел с порядком основания системы счисления.

Например, десятичное число 1. Такой способ записи чисел называется представлением числа с плавающей точкой. Если "плавающая" точка расположена в мантиссе перед первой значащей цифрой, то при фиксированном количестве разрядов, отведённых под мантиссу, обеспечивается запись максимального количества значащих цифр числа, то есть максимальная точность представления числа в машине.

Мантисса должна быть правильной дробью, у которой первая цифра после точки запятой в обычной записи отлична от нуля: Вещественные числа в компьютерах различных типов записываются по-разному, тем не менее, все компьютеры поддерживают несколько международных стандартных форматов, различающихся по точности, но имеющих одинаковую структуру следующего вида: Здесь порядок n-разрядного нормализованного числа задается в так называемой смещенной форме: Использование смещенной формы позволяет производить операции над порядками, как над беззнаковыми числами, что упрощает операции сравнения, сложения и вычитания порядков, а также упрощает операцию сравнения самих нормализованных чисел.

Чем больше разрядов отводится под запись мантиссы, тем выше точность представления числа.

счет чисел со знаком

Чем больше разрядов занимает порядок, тем шире диапазон от наименьшего отличного от нуля числа до наибольшего числа, представимого в машине при заданном формате. Стандартные форматы представления вещественных чисел: Позволяет хранить ненормализованные числа. Следует отметить, что вещественный формат с m-разрядной мантиссой позволяет абсолютно точно представлять m-разрядные целые числа.

Как компьютер выполняет арифметические действия над нормализованными числами? К началу выполнения арифметического действия операнды операции помещаются в соответствующие регистры АЛУ.

Отрицательное число

Сложение и вычитание При сложении и вычитании сначала производится подготовительная операция, называемая выравниванием порядков. В процессе выравнивания порядков мантисса числа с меньшим порядком сдвигается в своем регистре вправо на количество разрядов, равное разности порядков операндов.

счет чисел со знаком

После каждого сдвига порядок увеличивается на единицу. В результате выравнивания порядков одноименные разряды чисел оказываются расположенными в соответствующих разрядах обоих регистров, после чего мантиссы складываются или вычитаются. В случае необходимости полученный результат нормализуется путем сдвига мантиссы результата влево.

После каждого сдвига влево порядок результата уменьшается на единицу. Сложить двоичные нормализованные числа 0. Разность порядков слагаемых здесь равна трем, поэтому перед сложением мантисса первого числа сдвигается на три разряда вправо: